Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast.
نویسندگان
چکیده
Histone modifications regulate transcription by RNA polymerase II and maintain a balance between active and repressed chromatin states. The conserved Paf1 complex (Paf1C) promotes specific histone modifications during transcription elongation, but the mechanisms by which it facilitates these marks are undefined. We previously identified a 90-amino acid region within the Rtf1 subunit of Paf1C that is necessary for Paf1C-dependent histone modifications in Saccharomyces cerevisiae. Here we show that this histone modification domain (HMD), when expressed as the only source of Rtf1, can promote H3 K4 and K79 methylation and H2B K123 ubiquitylation in yeast. The HMD can restore histone modifications in rtf1Δ cells whether or not it is directed to DNA by a fusion to a DNA binding domain. The HMD can facilitate histone modifications independently of other Paf1C subunits and does not bypass the requirement for Rad6-Bre1. The isolated HMD localizes to chromatin, and this interaction requires residues important for histone modification. When expressed outside the context of full-length Rtf1, the HMD associates with and causes Paf1C-dependent histone modifications to appear at transcriptionally inactive loci, suggesting that its function has become deregulated. Finally, the Rtf1 HMDs from other species can function in yeast. Our findings suggest a direct and conserved role for Paf1C in coupling histone modifications to transcription elongation.
منابع مشابه
The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B.
In yeast cells, the Rtf1 and Paf1 components of the Paf1 transcriptional elongation complex are important for recruitment of Set1, the histone H3-lysine 4 (H3-Lys4) methylase, to a highly localized domain at the 5' portion of active mRNA coding regions. Here, we show that Rtf1 is essential for global methylation of H3-Lys4 and H3-Lys79, but not H3-Lys36. This role of Rtf1 resembles that of Rad6...
متن کاملHistone H2B ubiquitylation is associated with elongating RNA polymerase II.
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an as...
متن کاملThe Paf1 complex subunit Rtf1 buffers cells against the toxic effects of [PSI+] and defects in Rkr1-dependent protein quality control in Saccharomyces cerevisiae.
The Rtf1 subunit of the Paf1 complex is required for specific histone modifications, including histone H2B lysine 123 monoubiquitylation. In Saccharomyces cerevisiae, deletion of RTF1 is lethal in the absence of Rkr1, a ubiquitin-protein ligase involved in the destruction of nonstop proteins, which arise from mRNAs lacking stop codons or translational readthrough into the poly(A) tail. We perfo...
متن کاملThe PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast
Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast...
متن کاملCdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin.
The conserved Paf1 complex localizes to the coding regions of genes and facilitates multiple processes during transcription elongation, including the regulation of histone modifications. However, the mechanisms that govern Paf1 complex recruitment to active genes are undefined. Here we describe a previously unrecognized domain within the Cdc73 subunit of the Paf1 complex, the Cdc73 C-domain, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 27 شماره
صفحات -
تاریخ انتشار 2012